I managed to crack this on my second attempt, but then: I did play an ungodly amount of Kerbal Space Program a few years back. I guess
this means I’m now qualified to be an astronaut, right? I’d better update my CV…
On this day 50 years ago launched the first mission to take people to the moon. As part of #GlobalRocketLaunch day the
5-year-old and I fired off stomp rockets and learned about the science and engineering of Apollo 11.
Sergei Krikalev was in space when the Soviet Union collapsed. Unable to come home, he wound up spending two times longer than originally planned in orbit. They simply refused to
bring him back.
While tanks were rolling through Moscow’s Red Square, people built barricades on bridges, Mikhail Gorbachev and the Soviet Union went the way of history, Sergei Krikalev was in
space. 350 km away from Earth, the Mir space station was his temporary home.
He was nicknamed “the last citizen of the USSR.” When the Soviet Union broke apart into 15 separate states in 1991, Krikalev was told that he could not return home because the
country that had promised to bring him back home no longer existed.
Just showing the simulation which we used to validate the Whirly Dirly Corollary. Kind of a fun fact about our Solar System and orbiting bodies in general. Check out our Physics Today
article!
This is just…wooooah. Proper “dude, my hands are huge” grade moment, for me, when I watched the bubbles form in the droplet of water. I had an idea about what would happen, and I was
partially right, but by the time we were onto the third run-through of this experiment I realised that I’d been seeing more in it every single time.
Just want to play my game without reading this whole post? Play the game here – press a key, mouse button, or touch the screen to fire the
thrusters, and try to land at less than 4 m/s with as much fuel left over as possible.
In 1969, when all the nerds were still excited by sending humans to the moon instead of flinging cars around the sun, the hottest video game was Rocket (or Lunar) for the PDP-8. Originally implemented in FOCAL by high school student Jim Storer and soon afterwards ported to BASIC (the other dominant language to come as
standard with microcomputers), Rocket became the precursor to an entire genre of video games called “Lunar Lander games“.
The aim of these games was to land a spacecraft on the moon or similar body by controlling the thrust (and in some advanced versions, the rotation) of the engine. The spacecraft begins
in freefall towards the surface and will accelerate under gravity: this can be counteracted with thrust, but engaging the engine burns through the player’s limited supply of fuel.
Furthermore, using fuel lowers the total mass of the vessel (a large proportion of the mass of the Apollo landers was fuel for use in the descent stage) which reduces its inertia,
giving the engine more “kick” which must be compensated for during the critical final stages. It sounds dry and maths-y, but I promise that graphical versions can usually be played
entirely “by eye”.
Let’s fast-forward a little. In 1997 I enrolled to do my A-levels at what was then called Preston College, where my Computing tutor was a chap
called Kevin Geldard: you can see him at 49 seconds into this hilariously low-fi video which I guess must have been originally shot on
VHS despite being uploaded to YouTube in 2009. He’s an interesting chap in his own right whose contributions to my career in computing deserve their own blog post, but for the time
being all you need to know is that he was the kind of geek who, like me, writes software “for fun” more often than not. Kevin owned a Psion 3 palmtop – part of a series of devices with
which I also have a long history and interest – and he taught himself to program OPL by reimplementing a favourite game of his younger years on it: his take on the classic mid-70s-style graphical Lunar Lander.
My A-level computing class consisted of a competitive group of geeky lads, and we made sort-of a personal extracurricular challenge to ourselves of re-implementing Kevin’s take on
Lunar Lander using Turbo Pascal, the primary language in which our class was taught. Many hours out-of-class were spent
in the computer lab, tweaking and comparing our various implementations (with only ocassional breaks to play Spacy, CivNet, or my adaptation of LORD2): later, some of us would extend our competition by
going on to re-re-implement in Delphi, Visual Basic, or Java, or by adding additional levels relating to orbital rendezvous or landing on other planetary bodies. I was quite
proud of mine at the time: it was highly-playable, fun, and – at least on your first few goes – moderately challenging.
Always game to try old new things, and ocassionally finding time between the many things that I do to code, I decided to expand upon my recently-discovered
interest in canvas coding to bring back my extracurricular Lunar Lander game of two decades ago in a modern format. My goals were:
A one-button version of a classic “straight descent only” lunar lander game (unlike my 1997 version, which had 10 engine power levels, this remake has just “on” and “off”)
An implementation based initially on real physics (although not necessarily graphically to scale)… and then adapted as necessary to give a fun/playability balance that feels good
Runs in a standards-compliant browser without need for plugins: HTML5, Canvas, Javascript
Adapts gracefully to any device, screen resolution, and orientation with graceful degredation/progressive enhancement
You can have a go at my game right here in your web browser! The aim is to reach the ground travelling at a velocity of no more than 4 m/s
with the maximum amount of fuel left over: this, if anything, is your “score”. My record is 52% of fuel remaining, but honestly anything in the 40%+ range is very good. Touch the screen
(if it’s a touchscreen) or press a mouse button or any key to engage your thrusters and slow your descent.
And of course it’s all open-source, so you’re more than welcome to take it, rip it apart, learn from it, or make something better out
of it.
Back in early March, I posted comic #1337, Hack, about a wayward spacecraft. ISEE-3/ICE was returning to fly past Earth after many decades of wandering through space. It was still
operational, and could potentially be sent on a new mission, but NASA no longer had the equipment to talk to it—and announced that reconstructing the equipment…
The British Rail flying saucer, officially known simply as space vehicle, was a proposed spacecraft designed by Charles Osmond
Frederick.
Purpose
The flying saucer originally started as a proposal for a lifting platform. However, the project was revised and edited, and by the time the patent was filed had become a large
passenger craft for interplanetary travel.
Design
The craft was to be powered by nuclear fusion, using laser beams to produce pulses of nuclear energy in a generator in the centre of the craft, at a rate of over 1000 Hz to prevent resonance, which could damage the vehicle. The pulses
of energy would then have been transferred out of a nozzle into a series of radial electrodes running along the
underside of the craft, which would have converted the energy into electricity that would then pass into a ring of powerful electromagnets (the patent describes using superconductors if possible). These magnets would accelerate subatomic particles emitted by the fusion reaction, providing lift and thrust. This general design was used in several fusion rocket studies.
A layer of thick metal running above the fusion reactor would have acted as a shield to protect the passengers above from the radiation emitted from the core of the reactor. The entire vehicle would be piloted in such a way that the acceleration and deceleration of the craft would have simulated gravity in zero gravity conditions.
A patent application was filed by Jensen and Son on behalf of British Rail on 11 December 1970 and granted on 21 March 1973.
The patent lapsed in 1976 due to non-payment of renewal fees.
Media attention
The patent first came to the attention of the media when it was featured in The Guardian on 31
May 1978, in a story by Adrian
Hope of the New Scientist magazine. There was a further mention in The Daily Telegraph on 11 July 1982, during the silly season. The Railway Magazine mentioned it in its May 1996 issue, saying that the passengers would have been “fried”
anyway.
When the patent was rediscovered in 2006, it gained widespread publicity in the British press. A group of nuclear scientists examined the designs and declared them to be unworkable, expensive and very inefficient. Michel van Baal of the European Space Agency claimed “I have had a look at the plans, and they don’t look very serious
to me at all”, adding that many of the technologies used in the craft, such as nuclear fusion and
high temperature superconductors, had not yet been discovered, while Colin Pillinger, the scientist in charge of the Beagle 2 probe, was quoted as saying “If I hadn’t seen the documents I wouldn’t have believed it”.
Now here’s a funky idea – sub-orbital spaceflight in enormous helium balloons, up to a
two-mile wide sub-space station (a permanant facility at the very boundries of our atmosphere). This could be used to carry spaceship components for assembly in orbit, and then launched
using ion drives at a fraction of the price of rocket launches.
The designers estimate that they can have a functional prototype within seven years – given the funding they’d like – and that journeys into space could be done almost for free and much
more safely (albeit at the time expense that it would take up to nine days to get there).