Building a Secret Cabinet

We’ve recently had the attics of our house converted, and I moved my bedroom up to one of the newly-constructed rooms.

To make the space my own, I did a little light carpentry up there: starting with a necessary reshaping of the doors, then moving on to shelving and eventually… a secret cabinet!

I’d love to tell you about how I built it: but first, a disclaimer! I am a software engineer, and with good reason. Letting me near a soldering iron is ill-advised. Letting me use a table saw is tempting fate.

Letting me teach you anything about how you should use a soldering iron or a table saw is, frankly, asking for trouble.

A spirit level on an unfinished shelf, under a window and beneath an uncarpeted floor.
Knowing that I’d been short on shelf space in my old bedroom, I started work on fitting shelves for my new bedroom before the carpet had even arrived.

Building a secret cabinet wasn’t part of my plan, but came about naturally after I got started. I’d bought a stack of pine planks and – making use of Ruth’s table saw – cut them to squarely fit beneath each of the two dormer windows1. While sanding and oiling the wood I realised that I had quite a selection of similarly-sized offcuts and found myself wondering if I could find a use for them.

Dan drinks a 0% alcohol beer in front of three upright planks of wood.
The hardest part of sanding and oiling wood on the hottest day of the year is all the beer breaks you have to take. Such a drag.

I figured I had enough lumber to insert a small cabinet into one of the bookshelves, and that got me thinking… what about if it were a secret cabinet, disguised as books unless you knew where to look. Or to go one step further: what if it had some kind of electronic locking mechanism that could be triggered from somewhere else in the room2.

Magpie decal 'perched' on a light switch.
There are other ways in which I’ve made my new room distinctly-“mine” – like the pair of magpies – but probably the secret cabinet is the most-distinctive.

Not wanting to destroy a stack of real books, which is the traditional way to get a collection of book spines for the purpose of decorating a “fake bookshelf” panel3, I looked online and discovered the company that made the fake book spines used at the shop of my former employer. They looked ideal: carefully shaped and painted panels with either an old-school or contemporary look.

Buuut, they don’t seem to be well-equipped for short runs and are doubtless pricey, so I looked elsewhere and found the eBay presence of Beatty Lockey Antiques in Loewstof. They’d acquired a stack of them second-hand from the set of Netflix’s The School for Good and Evil.4

(By the way: at time of writing they’ve still got a few panels left, if you want to make your own…)

I absolutely must sing the praises of Brad at Beatty Lockey Antiques who, after the first delivery of fake book fronts was partially-damaged in transit, was super quick about helping me find the closest-available equivalent (I’d already measured-up based on the one I’d thought I was getting) and sent a replacement.

The cabinet is just a few bits of wood glued together and reinforced with L-shaped corner braces, with a trio of thin strips – made from leftover architrave board – attached using small brass hinges. The fake book fronts are stuck to the strips using double-sided mounting tape left over from installing a bathroom mirror. A simple magnetic clasp holds the door shut when pushed closed5, and the hinges are inclined to “want” the door to stand half-open, which means it only needs a gentle push away from the magnetic catch to swing it open.

Circuit diagram showing a Raspberry Pi Zero W connected to two relays, each connecting 12V DC to a latch solenoid.
The wiring is uncomplicated enough that even I – a self-confessed software engineer – could manage it. Note the separate power supply: those solenoids can draw a full 1 amp in a “surge” that’s enough to give a little Raspberry Pi Zero a Bad Day if you try to power it directly from the computer (there might be some capacitor-based black magic that I don’t understand that could have made this easier, I suppose)!

I mounted a Raspberry Pi Zero W into a rear corner inside the cabinet6, and wired it up via a relay to what was sold to me as a “large push-pull solenoid”, then began experimenting with the position in which I’d need to mount it to allow it to “kick” open the door, against the force of the magnetic clasp7.

This was, amazingly, the hardest part of the whole project! Putting the solenoid too close to the door didn’t work: it couldn’t “push” it from a standing start. Too far away, and the natural give of the door took the strain without pushing it open. Just the right distance, and the latch had picked up enough momentum that its weight “kicked” the door away from the magnet and followed-through to ensure that it kept moving.

A second solenoid, mounted inside the top of the cabinet, slides into the “loop” part of a large bolt fitting, allowing the cabinet to be electronically “locked”.

A Raspberry Pi Zero, relay, and solenoid assembly on the bottom outside edge of the inside of the cabinet.
I seriously must’ve spent about an hour getting the position of that little “kicker” in the bottom right just right.

Next up came the software. I started with a very simple Python program8 that would run a webserver and, on particular requests, open the lock solenoid and push with the “kicker” solenoid.

#!/usr/bin/python
#
# a basic sample implementation of a web interface for a secret cabinet
#
# setup:
#   sudo apt install -y python3-flask
#   wget https://github.com/sbcshop/Zero-Relay/blob/master/pizero_2relay.py
#
# running:
#   sudo flask --app web run --host=0.0.0.0 --port 80

from flask import Flask, redirect, url_for
import pizero_2relay as pizero
from time import sleep

# set up pizero_2relay with the two relays attached to this Pi Zero:
r1 = pizero.relay("R1") # The "kicker" relay
r2 = pizero.relay("R2") # The "locking bolt" relay

app = Flask(__name__)

# GET / - nothing here
@app.route("/")
def index():
  return "Nothing to see here."

# GET /relay - show a page with "open" and "lock" links
@app.route("/relay")
def relay():
  return "<html><head><meta name='viewport' content='width=device-width, initial-scale=1'></head><body><ul><li><a href='/relay/open'>Open</a></li><li><a href='/relay/lock'>Lock</a></li></ul>"

# GET /relay/open - open the secret cabinet then return to /relay
# This ought to be a POST request in your implementation, and you probably
# want to add some security e.g. a 
@app.route("/relay/open")
def open():
  # Retract the lock:
  r2.off()
  sleep(0.5)
  # Fire the kicker twice:
  r1.on()
  sleep(0.25)
  r1.off()
  sleep(0.25)
  r1.on()
  sleep(0.25)
  r1.off()
  # Redirect back:
  return redirect(url_for('relay'))

@app.route("/relay/lock")
def lock():
  # Engage the lock:
  r2.on()
  return redirect(url_for('relay'))
Don’t use this code as-is on any kind of open network, obviously. Follow the comments for some tips on what you’ll need to change.

Once I had something I could trigger from a web browser or with curl, I could start experimenting with trigger mechanisms. I had a few ideas (and prototyped a couple of them), including:

  • A mercury tilt switch behind a different book, so you pull it to release the cabinet in the style of a classic movie secret door.
  • A microphone that listens for a specific pattern of knocks on a nearby surface.
I had far too much fun playing about with crappy prototypes.
  • An RFID reader mounted underneath another surface, and a tag on the underside of an ornament: moving the ornament to the “right” place on the surface triggers the cabinet (elsewhere in the room).
  • The current design, shown in the video above, where a code9 is transmitted to the cabinet for verification.

I think I’m happy with what I’ve got going on with it now. And it’s been a good opportunity to improve my carpentry, electronics, and Python.

Footnotes

1 The two dormer windows, wouldn’t you guarantee it, were significantly different widths despite each housing a window of the same width. Such are the quirks of extending a building that the previous occupier had previously half-heartedly tried to extend, I guess.

2 Why yes, I am a big fan of escape rooms. Why do you ask?

3 For one thing, I live with JTA, and I’m confident that he’d somehow be able to hear the silent screams of whatever trashy novels I opted to sacrifice for the good of the project.

4 As a bonus, my 10-year-old is a big fan of the book series that inspired the film (and a more-muted fan of the film itself) and she was ever-so excited at my project using real-life parts of the set of the movie… that she’s asked me to make a similar secret cabinet for her, when we get around to redecorating her room later in the year!

5 If I did it again, I might consider using a low-powered electromagnetic lock to hold the door shut. In this design, I used a permanent magnet and a pair of latch solenoids: one to operate a bolt, the second to “kick” the door open against the pull of the magnet, and… it feels a little clumsier than a magnetic lock might’ve.

6 That double-sided mounting tape really came in handy for this project!

7 Props to vlogger Technology Connections, one of whose excellent videos on the functionality of 1970s pinball tables – maybe this one? – taught me what a latch solenoid was in the first place, last year, which probably saved me from the embarrassment of trying to do this kind of thing with, I don’t know, a stepper motor or something.

8 I’m not a big fan of Python normally, but the people who made my relays had some up with a convenience library for them that was written in it, so I figured it would do.

9 Obviously the code isn’t A-B; I changed it temporarily for the video.

× × × × ×

Nginx Caching for Passenger Applications

Suppose you’re running an application on a Passenger + Nginx powered server and you want to add caching.

Perhaps your application has a dynamic, public endpoint but the contents don’t change super-frequently or it isn’t critically-important that the user always gets up-to-the-second accuracy, and you’d like to improve performance with microcaching. How would you do that?

Where you’re at

Diagram showing the Internet connecting to an Nginx+Passenger webserver, connecting to an application written for Ruby, Python, or NodeJS.
Not pictured: the rest of the Internet.

Your configuration might look something like this:

1
2
3
4
5
6
7
server {
  # listen, server_name, ssl, logging etc. directives go here
  # ...

  root               /your/application;
  passenger_enabled  on;
}

What you’re looking for is proxy_cache and its sister directives, but you can’t just insert them here because while Passenger does act act like an upstream proxy (with parallels like e.g. passenger_pass_header which mirrors the behaviour of proxy_pass_header), it doesn’t provide any of the functions you need to implement proxy caching of non-static files.

Where you need to be

Instead, what you need to to is define a second server, mount Passenger in that, and then proxy to that second server. E.g.:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Set up a cache
proxy_cache_path /tmp/cache/my-app-cache keys_zone=MyAppCache:10m levels=1:2 inactive=600s max_size=100m;

# Define the actual webserver that listens for Internet traffic:
server {
  # listen, server_name, ssl, logging etc. directives go here
  # ...

  # You can configure different rules by location etc., but here's a simple microcache:
  location / {
    proxy_pass http://127.0.0.1:4863; # Proxy all traffic to the application server defined below
    proxy_cache           MyAppCache; # Use the cache defined above
    proxy_cache_valid     200 3s;     # Treat HTTP 200 responses as valid; cache them for 3 seconds
    proxy_cache_use_stale updating;   # (Optional) send outdated response while background-updating cache
    proxy_cache_lock      on;         # (Optional) only allow one process to update cache at once
  }
}

# (Local-only) application server on an arbitrary port number to act as the upstream proxy:
server {
  listen 127.0.0.1:4863;

  root               /your/application;
  passenger_enabled  on;
}

The two key changes are:

  • Passenger moves to a second server block, localhost-only, on an arbitrary port number (doesn’t need HTTPS, of course, but if your application detects/”expects” HTTPS you might need to tweak your headers).
  • Your main server block proxies to the second as its upstream, and you can add whatever caching directives you like.

Obviously you’ll need to be smarter if you host a mixture of public and private content (e.g. send Vary: headers from your application) and if you want different cache durations on different addresses or types of content, but there are already great guides to help with that. I only wrote this post because I spent some time searching for (nonexistent!) passenger_cache_ etc. rules and wanted to save the next person from the same trouble!

×

OpenAI-powered Linux shell uses AI to Do What You Mean

This is a repost promoting content originally published elsewhere. See more things Dan's reposted.

It’s like Alexa/Siri/Cortana for your terminal!

This is a basic Python shell (really, it’s a fancy wrapper over the system shell) that takes a task and asks OpenAI for what Linux bash command to run based on your description. For safety reasons, you can look at the command and cancel before actually running it.

Of all the stupid uses of OpenAI’s GPT-3, this might be the most-amusing. It’s really interesting to see how close – sometimes spot-on – the algorithm comes to writing the right command when you “say what you mean”. Also, how terribly, terribly ill-advised it would be to actually use this for real.

Amusing Line From The Python Manual

I just extracted the following line from the Python documentation (for those of you who don’t know, Python is a relatively-new and somewhat unusual programming language who’s name is derived not from the snake but from Monty Python):

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an unspecified number of bytes may have already been written to the underlying file.

You have to love any manual with that line in it! It almost beats the famous Fortran line about defining pi as a constant in case it’s value changes.